Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Automated decision support systems promise to help human experts solve multiclass classification tasks more efficiently and accurately. However, existing systems typically require experts to understand when to cede agency to the system or when to exercise their own agency. Otherwise, the experts may be better off solving the classification tasks on their own. In this work, we develop an automated decision support system that, by design, does not require experts to understand when to trust the system to improve performance. Rather than providing (single) label predictions and letting experts decide when to trust these predictions, our system provides sets of label predictions constructed using conformal prediction—prediction sets—and forcefully asks experts to predict labels from these sets. By using conformal prediction, our system can precisely trade-off the probability that the true label is not in the prediction set, which determines how frequently our system will mislead the experts, and the size of the prediction set, which determines the difficulty of the classification task the experts need to solve using our system. In addition, we develop an efficient and near-optimal search method to find the conformal predictor under which the experts benefit the most from using our system. Simulation experiments using synthetic and real expert predictions demonstrate that our system may help experts make more accurate predictions and is robust to the accuracy of the classifier the conformal predictor relies on.more » « less
-
null (Ed.)This work in progress presents the development and implementation of an Individual Development Plan (IDP) for undergraduate and first-year master’s engineering students. The IDP was designed and tailored as one of several strategies to increase retention and graduation rates for engineering students participating in the Program for Engineering Access, Retention, and LIATS Success (PEARLS). This program provides scholarships to low income, academically talented students (LIATS), and promotes their academic success and on-time graduation. We show how the IDPs, paired with a faculty mentoring component are able to produce a powerful mechanism to boost LIATS actions, propelling them to become highly competitive engineering students.more » « less
-
null (Ed.)Abstract Composites can be tailored to specific applications by adjusting process variables. These variables include those related to composition, such as volume fraction of the constituents and those associated with processing methods, methods that can affect composite topology. In the case of particle matrix composites, orientation of the inclusions affects the resulting composite properties, particularly so in instances where the particles can be oriented and arranged into structures. In this work, we study the effects of coupled electric and magnetic field processing with externally applied fields on those structures, and consequently on the resulting material properties that arise. The ability to vary these processing conditions with the goal of generating microstructures that yield target material properties adds an additional level of control to the design of composite material properties. Moreover, while analytical models allow for the prediction of resulting composite properties from constituents and composite topology, these models do not build upward from process variables to make these predictions. This work couples simulation of the formation of microscale architectures, which result from coupled electric and magnetic field processing of particulate filled polymer matrix composites, with finite element analysis of those structures to provide a direct and explicit linkages between process, structure, and properties. This work demonstrates the utility of these method as a tool for determining composite properties from constituent and processing parameters. Initial particle dynamics simulation incorporating electromagnetic responses between particles and between the particles and the applied fields, including dielectrophoresis, are used to stochastically generate representative volume elements for a given set of process variables. Next, these RVEs are analyzed as periodic structures using FEA yielding bulk material properties. The results are shown to converge for simulation size and discretization, validating the RVE as an appropriate representation of the composite volume. Calculated material properties are compared to traditional effective medium theory models. Simulations allow for mapping of composite properties with respect to not only composition, but also fundamentally from processing simulations that yield varying particle configurations, a step not present in traditional or more modern effective medium theories such as the Halpin Tsai or double-inclusion theories.more » « less
An official website of the United States government

Full Text Available